Virulence and genetic characterization of six baculovirus strains isolated from different populations of Spodoptera frugiperda (Lepidoptera: Noctuidae)

Arch Microbiol. 2022 Jan 3;204(1):108. doi: 10.1007/s00203-021-02722-8.

Abstract

Fall armyworm (FAW), Spodoptera frugiperda (Smith, 1797), is a polyphagous, voracious, and economically important agricultural pest. Biological control of FAW is a strategy that must be further explored. This study evaluated six baculovirus strains isolated from infected FAW larvae from Mexico, Argentina, Honduras, and the United States. Five alphabaculoviruses (SfNPV-An2, SfNPV-Arg, SfNPV-Fx, SfNPV-Ho, and SfNPV-Sin) and one betabaculovirus (SfGV-RV) were tested against FAW larvae, showing a wide diversity of virulence levels among strains when their estimated LC50s were compared, being SfNPV-Arg, SfNPV-Ho and SfNPV-Fx more virulent than SfNPV-An2, SfNPV-Sin, and SfGV-RV. To determine any virulence difference in vitro studies of these isolates, Sf9 cell cultures were used. Interestingly, only ODVs from four of the test SfNPV strains showed infectivity on Sf9 cell cultures, and some differences in virulence were observed. Genomic restriction analyses and partial sequences of lef-8, lef-9, and polh/granulin genes showed little variability among alphabaculoviruses, both, among them and with previously reported sequences. However, sequences from SfGV-RV were closer to previously reported sequences from the SfGV-VG008 strain than the SfGV-Arg and SfGV-VG014 strains. The great difference in the in vivo virulence was not correlated with great similarity among the isolates. The characterization of these six baculovirus isolates offers the basis for exploring their potential as biological control agents against S. frugiperda, as well the initial studies on their specific infection mechanisms, evolution, and ecology.

Keywords: Baculovirus; Genetic comparison; Phylogeny; Spodoptera frugiperda; Virulence.

MeSH terms

  • Animals
  • Baculoviridae* / genetics
  • Larva
  • Moths*
  • Spodoptera
  • Virulence
  • Zea mays