Discovering and Demonstrating a Novel High-Performing 2D-Patterned Electrode for Proton-Exchange Membrane Water Electrolysis Devices

ACS Appl Mater Interfaces. 2022 Jan 12;14(1):2335-2342. doi: 10.1021/acsami.1c20525. Epub 2022 Jan 2.

Abstract

Proton-exchange membrane water electrolysis (PEMWE) produces hydrogen with high efficiency and purity but uses high-loading platinum-group metal (PGM) catalysts. Such concerns call for the development of novel electrode architectures to improve catalyst utilization and mass activity, thus promoting PEMWE cost competitiveness for large-scale implementation. In this study, we demonstrated, for the first time, a novel two-dimensional (2D)-patterned electrode with edge effects to address these challenges. The edge effect was induced by membrane properties, potential distribution, and counter electrode coverage and could be optimized by tuning the catalyst layer dimensions. To achieve identical PEMWE performance, the optimal pattern saved the 21% anode PGM catalyst compared with the conventional catalyst fully covered electrode. The PGM catalyst could be further reduced by 61% to boost mass activity with no significant performance loss. The results also indicated that the electrode uniformity in PEMWE cells might not be as critical as that in PEM fuel cells. The novel 2D-patterned electrode could effectively reduce PGM catalyst loading, accelerating affordable and large-scale production of hydrogen and other value-added chemicals via electrolysis.

Keywords: edge effect; mass activity; oxygen evolution reaction; patterned electrode; water electrolysis.