Highly Sensitive and Ultra-Broadband VO2(B) Photodetector Dominated by Bolometric Effect

Nano Lett. 2022 Jan 12;22(1):485-493. doi: 10.1021/acs.nanolett.1c04393. Epub 2021 Dec 30.

Abstract

In this study, Wadsley B phase vanadium oxide (VO2(B)) with broad-band photoabsorption ability, a large temperature coefficient of resistance (TCR), and low noise was developed for uncooled broad-band detection. By using a freestanding structure and reducing the size of active area, the VO2(B) photodetector shows stable and excellent performances in the visible to the terahertz region (405 nm to 0.88 mm), with a peak TCR of -4.77% K-1 at 40 °C, a peak specific detectivity of 6.02 × 109 Jones, and a photoresponse time of 83 ms. A terahertz imaging ability with 30 × 30 pixels was demonstrated. Scanning photocurrent imaging and real-time temperature-photocurrent measurements confirm that a photothermal-type bolometric effect is the dominating mechanism. The study shows the potential of VO2(B) in applications as a new type of uncooled broad-band photodetection material and the potential to further raise the performance of broad-band photodetectors by structural design.

Keywords: THz imaging; VO2(B); bolometric effect; broad-band photoresponse.