Sunlight-Coordinated High-Performance Moisture Power in Natural Conditions

Adv Mater. 2022 Mar;34(10):e2103897. doi: 10.1002/adma.202103897. Epub 2022 Jan 30.

Abstract

It is a challenge to spontaneously harvest multiple clean sources from the environment for upgraded energy-converting systems. The ubiquitous moisture and sunlight in nature are attractive for sustainable power generation especially. A high-performance light-coordinated "moist-electric generator" (LMEG) based on the rational combination of a polyelectrolyte and a phytochrome is herein developed. By spontaneous adsorption of gaseous water molecules and simultaneous exposure to sunlight, a piece of 1 cm2 composite film offers an open-circuit voltage of 0.92 V and a considerable short-circuit current density of up to 1.55 mA cm-2 . This record-high current density is about two orders of magnitude improvement over that of most conventional moisture-enabled systems, which is caused by moisture-induced charge separation accompanied with photoexcited carrier migration, as confirmed by a dynamic Monte Carlo device simulation. Flexible devices with customizable size are available for large-scale integration to effectively work under a wide range of relative humidity (about 20-100%), temperature (10-80 °C), and light intensity (30-200 mW cm-2 ). The wearable and portable LMEGs provide ample power supply in natural conditions for indoor and outdoor electricity-consuming systems. This work opens a novel avenue to develop sustainable power generation through collecting multiple types of natural energy by a single hybrid harvester.

Keywords: environmental energy conversion; light coordination; moist-electric generation; photogenerated carriers; polyelectrolyte and phytochrome composites.