Advances in Approaches to Study Chromatin-Mediated Epigenetic Memory

ACS Synth Biol. 2022 Jan 21;11(1):16-25. doi: 10.1021/acssynbio.1c00394. Epub 2021 Dec 29.

Abstract

Chromatin structure contains critical epigenetic information in various forms, such as histone post-translational modifications (PTMs). The deposition of certain histone PTMs can remodel the chromatin structure, resulting in gene expression alteration. The epigenetic information carried by histone PTMs could be inherited by daughter cells to maintain the gene expression status. Recently, studies revealed that several conserved replisome proteins regulate the recycling of parental histones carrying epigenetic information in Saccharomyces cerevisiae. Hence, the proper recycling and deposition of parental histones onto newly synthesized DNA strands is presumed to be essential for epigenetic inheritance. Here, we first reviewed the fundamental mechanisms of epigenetic modification establishment and maintenance discovered within fungal models. Next, we discussed the functions of parental histone chaperones and the potential impacts of the parental histone recycling process on heterochromatin-mediated transcriptional silencing inheritance. Subsequently, we summarized novel synthetic biology approaches developed to analyze individual epigenetic components during epigenetic inheritance in fungal and mammalian systems. These newly emerged research paradigms enable us to dissect epigenetic systems in a bottom-up manner. Furthermore, we highlighted the approaches developed in this emerging field and discussed the potential applications of these engineered regulators to building synthetic epigenetic systems.

Keywords: epigenetic inheritance; epigenome editing; fungi; heterochromatin; synthetic epigenetics.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Chromatin* / genetics
  • Epigenesis, Genetic / genetics
  • Epigenomics
  • Heterochromatin / genetics
  • Histones* / genetics
  • Histones* / metabolism
  • Mammals / genetics
  • Protein Processing, Post-Translational / genetics

Substances

  • Chromatin
  • Heterochromatin
  • Histones