In-Depth Site-Specific O-Glycosylation Analysis of Glycoproteins and Endogenous Peptides in Cerebrospinal Fluid (CSF) from Healthy Individuals, Mild Cognitive Impairment (MCI), and Alzheimer's Disease (AD) Patients

ACS Chem Biol. 2022 Nov 18;17(11):3059-3068. doi: 10.1021/acschembio.1c00932. Epub 2021 Dec 29.

Abstract

Site-specific O-glycoproteome mapping in complex biological systems provides a molecular basis for understanding the structure-function relationships of glycoproteins and their roles in physiological and pathological processes. Previous O-glycoproteome analysis in cerebrospinal fluid (CSF) focused on sialylated glycoforms, while missing information on other glycosylation types. In order to achieve an unbiased O-glycosylation profile, we developed an integrated strategy combining universal boronic acid enrichment, high-pH fractionation, and electron-transfer and higher-energy collision dissociation (EThcD) for enhanced intact O-glycopeptide analysis. We applied this strategy to analyze the O-glycoproteome in CSF, resulting in the identification of 308 O-glycopeptides from 110 O-glycoproteins, covering both sialylated and nonsialylated glycoforms. To our knowledge, this is the largest data set of O-glycoproteins and O-glycosites reported for CSF to date. We also developed a peptidomics workflow that utilized the EThcD and a three-step database searching strategy for comprehensive PTM analysis of endogenous peptides, including N-glycosylation, O-glycosylation, and other common peptide PTMs. Interestingly, among the 1411 endogenous peptides identified, 89 were O-glycosylated, and only one N-glycosylated peptide was found, indicating that CSF endogenous peptides were predominantly O-glycosylated. Analyses of the O-glycoproteome and endogenous peptidome PTMs were also conducted in the CSF of MCI and AD patients to provide a landscape of glycosylation patterns in different disease states. Our results showed a decreasing trend in fucosylation and an increasing trend of endogenous peptide O-glycosylation, which may play an important role in AD progression.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Alzheimer Disease*
  • Cognitive Dysfunction*
  • Glycopeptides / chemistry
  • Glycoproteins / chemistry
  • Glycosylation
  • Humans
  • Peptides
  • Proteome / metabolism

Substances

  • Glycoproteins
  • Glycopeptides
  • Proteome
  • Peptides