Strategies for Optimization of the Clustered Regularly Interspaced Short Palindromic Repeat-Based Genome Editing System for Enhanced Editing Specificity

Hum Gene Ther. 2022 Apr;33(7-8):358-370. doi: 10.1089/hum.2021.283. Epub 2022 Mar 1.

Abstract

The clustered regularly interspaced short palindromic repeats (CRISPR) system is inarguably the most valuable gene editing tool ever discovered. Currently, three classes of CRISPR-based genome editing systems have been developed for gene editing, including CRISPR/CRISPR associate system (Cas) nucleases, base editors, and prime editors. Ever-evolving CRISPR technology plays an important role in medicine; however, the biggest obstacle to its use in clinical practice is the induction of off-target effects (OTEs) during targeted editing. Therefore, continuous improvement and optimization of the CRISPR system for reduction of OTEs is a major focus in the field of CRISPR research. This review aims to provide a comprehensive guide for optimization of the CRISPR-based genome editing system.

Keywords: CRISPR/Cas nucleases; RNA base editors; base editors; off-target effects; prime editors.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • CRISPR-Cas Systems*
  • Clustered Regularly Interspaced Short Palindromic Repeats / genetics
  • Endonucleases / genetics
  • Gene Editing*

Substances

  • Endonucleases