Potential next-generation medications for self-administered platforms

J Control Release. 2022 Feb:342:26-30. doi: 10.1016/j.jconrel.2021.12.028. Epub 2021 Dec 24.

Abstract

The Coronavirus Disease (COVID-19) pandemic has reshaped clinical chronic disease management. Patients reduced the number of physical clinic visits for regular follow-up care because of the pandemic. However, in developing countries, the scattered healthcare system hindered accessibility to clinical consultation, and poorly controlled chronic diseases resulted in numerous complications. Furthermore, the longer patients suffered from the chronic disease being treated, the more physical and psychological stress they experienced. "Diabetes Burnout," as an example, is a term to describe the phenomenon of psychological reluctance in long-term glycemic control. A comprehensive, patient-centered, and automatic drug administration and delivery model may reduce patient stress and increase compliance. Potential next-generation medication platforms, consisting of internal regulation and external interaction, may conduct autonomous dose adjustment and continuous selfmonitoring with the assistance of artificial intelligence, telemedicine, and wireless technologies. Internal regulation forms a closed-loop system in which drug administration is optimized in an implanted drug-releasing device according to a patient's physiopathological response. The other feature, external interaction, creates an ecosystem among patients, healthcare providers, and pharmaceutical researchers to monitor and adjust post-market therapeutic efficacy and safety. These platforms may provide a solution for self-medication and self-care for a wide variety of patients but may be life-changing for patients who live in developing countries where the healthcare system is scattered, as they could effectively remove healthcare barriers. As the technology matures, these self-administrated platforms may become more available and increasingly affordable, offering considerable impact to health and wellness efforts worldwide.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Artificial Intelligence
  • COVID-19*
  • Ecosystem
  • Humans
  • Pharmaceutical Preparations*
  • SARS-CoV-2

Substances

  • Pharmaceutical Preparations