The evolution of quantitative sensitivity

Philos Trans R Soc Lond B Biol Sci. 2022 Feb 14;377(1844):20200529. doi: 10.1098/rstb.2020.0529. Epub 2021 Dec 27.

Abstract

The ability to represent approximate quantities appears to be phylogenetically widespread, but the selective pressures and proximate mechanisms favouring this ability remain unknown. We analysed quantity discrimination data from 672 subjects across 33 bird and mammal species, using a novel Bayesian model that combined phylogenetic regression with a model of number psychophysics and random effect components. This allowed us to combine data from 49 studies and calculate the Weber fraction (a measure of quantity representation precision) for each species. We then examined which cognitive, socioecological and biological factors were related to variance in Weber fraction. We found contributions of phylogeny to quantity discrimination performance across taxa. Of the neural, socioecological and general cognitive factors we tested, cortical neuron density and domain-general cognition were the strongest predictors of Weber fraction, controlling for phylogeny. Our study is a new demonstration of evolutionary constraints on cognition, as well as of a relation between species-specific neuron density and a particular cognitive ability. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.

Keywords: Weber fraction; brain evolution; quantity discrimination.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Bayes Theorem
  • Biological Evolution*
  • Cognition* / physiology
  • Humans
  • Mammals
  • Phylogeny
  • Psychophysics
  • Species Specificity

Associated data

  • figshare/10.6084/m9.figshare.c.5713120