Lignin-Inspired Polymers with High Glass Transition Temperature and Solvent Resistance from 4-Hydroxybenzonitrile, Vanillonitrile, and Syringonitrile Methacrylates

ACS Sustain Chem Eng. 2021 Dec 20;9(50):16874-16880. doi: 10.1021/acssuschemeng.1c07048. Epub 2021 Dec 7.

Abstract

We here report on the synthesis and polymerization of nitrile-containing methacrylate monomers, prepared via straightforward nitrilation of the corresponding lignin-inspired aldehyde. The polymethacrylates reached exceptionally high glass transition temperatures (T g values), i.e., 150, 164, and 238 °C for the 4-hydroxybenzonitrile, vanillonitrile, and syringonitrile derivatives, respectively, and were thermally stable up to above 300 °C. Copolymerizations of the nitrile monomers with styrene and methyl methacrylate, respectively, gave potentially melt processable materials with tunable T g values and enhanced solvent resistance. The use of lignin-derived nitrile-containing monomers represents an efficient strategy toward well-defined biobased high T g polymer materials.