Absorption, translocation, and metabolism of florpyrauxifen-benzyl and cyhalofop-butyl in cyhalofop-butyl-resistant barnyardgrass [Echinochloa crus-galli (L.) P. Beauv.]

Pestic Biochem Physiol. 2022 Jan:180:104999. doi: 10.1016/j.pestbp.2021.104999. Epub 2021 Nov 24.

Abstract

Dose-response experiments were conducted to assess the sensitivity of one susceptible and three putative resistant (R1, R2, and R3) barnyardgrass [Echinochloa crus-galli (L.) P. Beauv.] biotypes to florpyrauxifen-benzyl and cyhalofop-butyl alone and as a formulated premix. Subsequently, potential resistance mechanisms of the barnyardgrass were evaluated. Based on biomass reduction results, resistant/susceptible ratios were calculated for R1 (7.0-50), R2 (7.0-150), and R3 (18-214) biotypes. Absorption and translocation of [14C]-florpyrauxifen-benzyl decreased in R1 and R3 biotypes, but not for [14C]-cyhalofop-butyl. The metabolism of [14C]-florpyrauxifen-benzyl to [14C]-florpyrauxifen-acid was >2-fold less in resistant biotypes (9-11%) than in the susceptible biotype (23%). Moreover, the production of [14C]-florpyrauxifen-acid in susceptible barnyardgrass (not in the R biotypes) increased 3-fold when florpyrauxifen-benzyl and cyhalofop-butyl were applied in mixture compared to florpyrauxifen-benzyl applied alone. The tested barnyardgrass biotypes had no mutation in the Transport Inhibitor Response1, auxin-signaling F-box, and acetyl coenzyme A carboxylase genes. Although further studies on cyhalofop-butyl resistance with respect to analysis of specific metabolites are needed, our findings in this study demonstrates that the evolution of florpyrauxifen-benzyl resistance in multiple resistant barnyardgrass can be related to non-target-site resistance mechanisms reducing absorption and translocation of the herbicide and causing reduced conversion or rapid degradation of florpyrauxifen-acid.

Keywords: Barnyardgrass; Cyhalofop-butyl; Florpyrauxifen-benzyl; Herbicide resistance; Metabolism.

MeSH terms

  • Butanes
  • Echinochloa* / genetics
  • Herbicide Resistance / genetics
  • Herbicides* / pharmacology
  • Nitriles / pharmacology

Substances

  • Butanes
  • Herbicides
  • Nitriles
  • cyhalofop-butyl