Use of reverse osmosis reject from drinking water plant for microalgal biomass production

Water Res. 2022 Feb 15:210:117989. doi: 10.1016/j.watres.2021.117989. Epub 2021 Dec 20.

Abstract

The present study evaluates the use of reverse osmosis (RO) reject, termed as ROR, for microalgal biomass production. The supplementation of ROR from two different sources, namely domestic RO unit (ROR1) and commercial-scale RO plant (ROR2), showed a synergistic effect on the growth and biochemical composition of Chlorella pyrenoidosa. Among the tested ROR1 doses, the highest biomass production (1.27±0.06 g L-1) was observed with 25% ROR1 supplemented growth media. In contrast, the lipid content (28.85±3.13% of TS) in C. pyrenoidosa at 50% ROR1 dose was almost twice that in BG11 (positive control). Interestingly, the microalgae showed relatively higher biomass production (1.37±0.07 g L-1) and higher lipid content (33.23±3.92% of TS) when 50% ROR2 was used in growth media. At the same time, the estimated carbohydrate and protein contents were 28.41±0.73 and 29.75±0.31% of TS, respectively. Furthermore, the lipid productivity (28.98±2.79 mg L-1 d-1) was relatively higher than the nutrient media (12.35±1.34 mg L-1 d-1). The present findings revealed that the RO reject from drinking water purifiers can efficiently be utilized for lipid-rich microalgal biomass production. Hence, the dependency on freshwater resources for mass scale microalgae cultivation through recycling of RO reject can be reduced.

Keywords: Biofuel; Chlorella pyrenoidosa; Lipid; Reverse osmosis reject; Wastewater; Water recycling.

MeSH terms

  • Biomass
  • Chlorella*
  • Drinking Water*
  • Microalgae*
  • Osmosis

Substances

  • Drinking Water