Towards carbon neutrality: The role of different paths of technological progress in mitigating China's CO2 emissions

Sci Total Environ. 2022 Mar 20:813:152588. doi: 10.1016/j.scitotenv.2021.152588. Epub 2021 Dec 23.

Abstract

China's carbon neutrality in 2060 is a hot issue discussed by policymakers and scholars. Previous literature shows that technological progress is the key to CO2 emission mitigation, but ignores the role of different paths of technological progress. This paper uses the panel data covering China's 30 provinces from 2008 to 2017 to study the effect of different paths of technological progress on CO2 emissions including domestic innovation, foreign technology import and regional technology transfer. Furthermore, the assimilation effect of technologies from domestic and foreign is investigated, and its impact on CO2 emissions is explored. The empirical evidence indicates that: (1) there is an inverted U-shaped relationship between domestic innovation and China's CO2 emissions. (2) Foreign technology imports cannot decrease CO2 emissions and carbon intensity in high-emission regions. Meanwhile, domestic technology transfer increase CO2 emissions and carbon intensity in high-emission regions. However, foreign technology import of low-emission areas can achieve CO2 emission mitigation. (3) The assimilation of technologies from abroad and domestic can increase CO2 emissions and carbon intensity in high-emission regions. But the absorption effect of technologies from domestic can decrease CO2 emissions and carbon intensity in low-carbon regions. According to the above results, this paper proposes some targeted policy suggestions for the choice of technological progress paths for CO2 emission mitigation in different regions of China.

Keywords: CO(2) emissions; Domestic innovation; Foreign technology import; Regional technology transfer; Technology absorptive ability.

MeSH terms

  • Carbon Dioxide* / analysis
  • Carbon*
  • China
  • Policy
  • Technology

Substances

  • Carbon Dioxide
  • Carbon