In-situ construction of 3D hetero-structured sulfur-doped nanoflower-like FeNi LDH decorated with NiCo Prussian blue analogue cubes as efficient electrocatalysts for boosting oxygen evolution reaction

J Colloid Interface Sci. 2022 Apr:611:205-214. doi: 10.1016/j.jcis.2021.12.066. Epub 2021 Dec 16.

Abstract

At present, it is urgent for us to develop non-noble metal-based catalysts with abundant reserves and high efficiency towards oxygen evolution reaction (OER) in water electrolysis devices. Herein, cubic NiCo-Prussian blue analogue (PBA)/ flower-like FeNi layered double hydroxide (LDH) heterostructure was facilely in-situ formed on porous nickel foam (NF) via hydrothermal strategy coupled by subsequent sulfurizing treatment (named as S-FeNi LDH@PBA/NF), showing largely facilitated electron transfer over homogeneous counterpart. Also, we investigated the effects of different Fe/Ni feeding ratios on their catalytic properties in some detail. The as-prepared S-FeNi LDH@PBA/NF demonstrated the superior OER activity (e.g. only 243 mV of overpotential required for 50 mA cm-2) and stability. Accordingly, using the catalyst as anode, the home-assembled S-FeNi LDH@PBA/NF//Pt/C/NF electrolyzer exhibited small Tafel slope (83.1 mV dec-1) and ultra-stability, showing the potential feasibility in practical water electrolysis. This strategy provides a hopeful model to enhance the OER performance by effectively constructing advanced catalyst with promising heterostructure and optimal electronic structure.

Keywords: Heterostructure; In-situ construction; Layered double hydroxide; Oxygen evolution reaction; Prussian blue analogue.