[Effects of heavy metal cadmium on Caulerpa lentillifera based on transcriptome analysis]

Ying Yong Sheng Tai Xue Bao. 2021 Dec;32(12):4447-4456. doi: 10.13287/j.1001-9332.202112.035.
[Article in Chinese]

Abstract

With the acceleration of industrialization, the toxic effect of heavy metal cadmium (Cd) pollution has become prominent. In order to explore the molecular mechanism of the physiological regulation of Caulerpa lentillifera under Cd stress, we analyzed the transcriptome of Cd-stressed (Hcd2+) algae tissues using RNA-Seq. A total of 702 differentially expressed genes (DEGs) were screened between the control and Hcd2+ groups, out of which 257 genes were up-regulated and 445 genes were down-regulated in the Hcd2+ group. We conducted functional annotation and enrichment analysis of the obtained DEGs. The results showed that various biological functions of C. lentillifera were affected under Cd2+stress, which eventually showed growth inhibition. Results of GO enrichment analysis showed that the production and removal of reactive oxygen species (ROS) in C. lentillifera were out of balance and caused oxidative damage such as DNA damage. Results of KEGG enrichment analysis showed that many photosynthesis-related pathways were inhibited, indicating that Cd2+ stress led to disorder of photosynthetic reaction of C. lentillifera.

随着人类社会工业化进程的加快,重金属镉(Cd)污染对海洋生物的毒害作用突显。为了探索Cd胁迫下长茎葡萄蕨藻生理调控的分子响应机制,本文采用RNA-Seq技术对镉胁迫(Hcd2+)藻体组织转录组进行研究。结果表明: 与对照相比,Hcd2+组共筛选出差异表达基因(DEGs)702个,其中,257个基因上调表达,445个基因下调表达。对获得的DEGs进行功能注释及富集分析,发现长茎葡萄蕨藻的多种生物学功能受到Cd2+胁迫的影响,最终表现为抑制生长。GO富集分析发现,长茎葡萄蕨藻体内氧自由基的产生与清除出现失衡,并产生了DNA损伤等氧化伤害。KEGG富集分析发现,长茎葡萄蕨藻中多条与光合作用相关途径受到抑制,表明Cd2+胁迫导致长茎葡萄蕨藻的光合反应紊乱。.

Keywords: Caulerpa lentillifera; cadmium stress; molecular mechanism; transcriptome.

MeSH terms

  • Cadmium / toxicity
  • Caulerpa* / genetics
  • Gene Expression Profiling
  • Metals, Heavy* / toxicity
  • Transcriptome

Substances

  • Metals, Heavy
  • Cadmium