Combined amendment reduces soil Cd availability and rice Cd accumulation in three consecutive rice planting seasons

J Environ Sci (China). 2022 Jan:111:141-152. doi: 10.1016/j.jes.2021.03.027. Epub 2021 Mar 26.

Abstract

The scientific application of stabilized materials has been considered an effective method for the in situ remediation of Cd-contaminated soil. This study aimed to investigate the persistence of the effect of a combined amendment of limestone and sepiolite (LS) on soil Cd availability and accumulation in rice grown in a mildly Cd-contaminated paddy field (0.45 mg/kg of Cd) over three consecutive rice seasons. 1125-4500 kg/ha of LS was applied to the soil before the first rice planting season and 562.5-2250 kg/ha of LS was supplemented before the third rice planting season. The application of LS (1125-4500 kg/ha) increased the soil pH by 0.44-1.09, 0.18-0.53, and 0.42-0.68 in the first, second, and third season, respectively, and decreased the soil acid-extractable Cd content by 18.2-36.4%, 17.7-33.5%, and 9.6-17.6%. LS application significantly decreased the Cd contents in the rice tissues. The application of 4500 kg/ha of LS decreased the Cd content in brown rice to below the National Food Limit Standard of 0.2 mg/kg (GB 2762-2017) in the three consecutive rice seasons. However, the effect of LS on the soil-rice system was significantly weakened in the third season. The supplementary application of 562.5-2250 kg/ha of LS further decreased the Cd content in brown rice by 26.1-56.5% and decreased the health risk index by 23.7-43.8%. Therefore, it was recommended to apply 4500 kg/ha of LS in the first season and to supplement 2250 kg/ha of LS in the third season to effectively guarantee the clean production of rice in three consecutive rice seasons.

Keywords: Cadmium; Health risk; Remediation persistence; Rice (Oryza sativa L.); Stabilization.

MeSH terms

  • Cadmium / analysis
  • Oryza*
  • Seasons
  • Soil
  • Soil Pollutants* / analysis

Substances

  • Soil
  • Soil Pollutants
  • Cadmium