Spatiotemporal Evolution and Influencing Factors of Carbon Sink Dynamics at County Scale: A Case Study of Shaanxi Province, China

Int J Environ Res Public Health. 2021 Dec 11;18(24):13081. doi: 10.3390/ijerph182413081.

Abstract

To explore the spatiotemporal evolution of carbon sinks in Shaanxi Province, and their impact mechanisms, this study used panel data from 107 counties (districts) in Shaanxi Province from 2000 to 2017. First, we conducted spatial distribution directional analysis and exploratory spatial data analysis (ESDA). Then, we constructed a geographic spatial weight matrix and used the spatial panel Durbin model to analyze the driving factors of carbon sink changes in Shaanxi Province, from the perspective of spatial effects. The results showed that: (1) The temporal evolution of carbon sinks during the study period showed an overall upward trend, but the carbon sinks of counties (districts) differed greatly, and the center of gravity of carbon sinks, as a whole, showed the characteristics of "south to north" migration. (2) The carbon sinks of Shaanxi Province have a significant positive global spatial autocorrelation in geographic space. The local spatial pattern was characterized by low-value agglomeration (low-low cluster) and high-value agglomeration (high-high cluster), supplemented by high-value bulge (high-low outlier) and low-value collapse (low-high outlier). (3) The result of the spatial measurement model proved that the spatial Durbin model, with dual fixed effects of time and space, should be selected. In the model results, factors such as population, per capita gross domestic product (GDP), local government general budget expenditure, and local government general budget revenue all reflect strong spatial spillover effects. Accordingly, in the process of promoting "carbon neutrality", the government needs to comprehensively consider the existence of spatial spillover effects between neighboring counties (districts), and strengthen the linkage-management and control roles of counties (districts) in increasing carbon sinks.

Keywords: ESDA; carbon sinks; driving factors; spatial panel Durbin model; spatiotemporal evolution.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carbon Sequestration*
  • China
  • Spatial Analysis