Estimation of Energy Losses in Nanocrystalline FINEMET Alloys Working at High Frequency

Materials (Basel). 2021 Dec 15;14(24):7745. doi: 10.3390/ma14247745.

Abstract

Soft magnetic materials are at the core of electromagnetic devices. Planar transformers are essential pieces of equipment working at high frequency. Usually, their magnetic core is made of various types of ferrites or iron-based alloys. An upcoming alternative might be the replacement the ferrites with FINEMET-type alloys, of nominal composition of Fe73.5Si13.5B9Cu3Nb1 (at. %). FINEMET is a nanocrystalline material exhibiting excellent magnetic properties at high frequencies, a soft magnetic alloy that has been in the focus of interest in the last years thanks to its high saturation magnetization, high permeability, and low core loss. Here, we present and discuss the measured and modelled properties of this material. Owing to the limits of the experimental set-up, an estimate of the total magnetic losses within this magnetic material is made, for values greater than the measurement limits of the magnetic flux density and frequency, with reasonable results for potential applications of FINMET-type alloys and thin films in high frequency planar transformer cores.

Keywords: FINEMET; Steinmetz losses estimation; high frequency applications; nanocrystalline ribbon; planar transformers; soft magnetic alloy.