Impedance Analysis and Noise Measurements on Multi Walled Carbon Nanotube Networks

Materials (Basel). 2021 Dec 7;14(24):7509. doi: 10.3390/ma14247509.

Abstract

The electrical impedance characteristics of multi-walled carbon nanotube (MWCNTs) networks were studied as a function of CNT concentrations in the frequency range of 1 kHz-1 MHz. The novelty of this study is that the MWCNTs were not embedded in any polymer matrix and so the response of the device to electrical measurements are attributed to the CNTs in the network without any contribution from a polymer host matrix. Devices with low MWCNT packing density (0.31-0.85 µg/cm2) exhibit a frequency independent plateau in the low-frequency regime. At higher frequencies, the AC conductivity of these devices increases following a power law, characteristic of the universal dynamic response (UDR) phenomenon. On the other hand, devices with high MWCNT concentrations (>1.0 µg/cm2) exhibit frequency independent conductivity over the entire frequency range (up to 1 MHz), indicating that conduction in these devices is due to direct contact between the CNTs in the network. A simple single-relaxation time electrical equivalent circuit with an effective resistance and capacitance is used to describe the device performance. The electrical noise measurements on devices with different MWCNT packing densities exhibit bias-dependent low-frequency 1/f noise, attributed to resistance fluctuations.

Keywords: 1/f noise; Nyquist analysis; carbon nanotubes; impedance; multi-walled; packing density; permittivity; tunneling.