Isoflavone Changes in Immature and Mature Soybeans by Thermal Processing

Molecules. 2021 Dec 10;26(24):7471. doi: 10.3390/molecules26247471.

Abstract

The isoflavone changes occurring in mature soybeans during food processing have been well studied, but less information is available on the changes in immature soybeans during thermal processing. This study aimed to determine the effect of thermal processing by dry- or wet-heating on the changes in the isoflavone profiles of immature and mature soybeans. In the malonylglycoside forms of isoflavone, their deglycosylation was more severe after wet-heating than after dry-heating regardless of the soybean maturity. The malonyl forms of isoflavones in the immature seeds were drastically degraded after a short wet-heating process. In the acetylglycoside forms of isoflavone, dry-heating produced relatively low amounts of the acetyl types in the immature soybeans compared with those in the mature soybeans. These results were explained by the content of acetyldaidzin being relatively less changed after dry-heating immature soybeans but increasing four to five times in the mature soybeans. More of the other types of acetylglycoside were produced by dry-heating soybeans regardless of their maturity. Acetylgenistin in wet-heating was a key molecule because its content was unchanged in the immature soybeans during processing but increased in the mature soybeans. This determined the total acetylglycoside content after wet-heating. In contrast, most of the acetyl forms of isoflavone were produced after 90 to 120 min of dry-heating regardless of the seed maturity. It can be suggested that the pattern of isoflavone conversion was significantly affected by the innate water content of the seeds, with a lower water content in the mature soybeans leading to the greater production of acetyl isoflavones regardless of the processing method even if only applied for a relatively short time. The results suggested that the isoflavone conversion in the immature soybeans mainly follows the wet-heating process and can be promoted in the application of stronger processing.

Keywords: immature seeds; internal water content; isoflavone conversion; mature seeds; thermal process.

MeSH terms

  • Food Handling
  • Glycine max / drug effects*
  • Isoflavones / chemistry
  • Isoflavones / pharmacology*
  • Temperature*

Substances

  • Isoflavones