Effects of Virtual Reality-Based Relaxation Techniques on Psychological, Physiological, and Biochemical Stress Indicators

Healthcare (Basel). 2021 Dec 14;9(12):1729. doi: 10.3390/healthcare9121729.

Abstract

Various relaxation techniques could benefit from merging with virtual reality (VR) technologies, as these technologies are easily applicable, involving, and user-friendly. To date, it is unclear which relaxation technique using biofeedback combined with VR technology is the most effective. The study aimed to compare the effectiveness of brief VR-based biofeedback-assisted relaxation techniques including electroencephalographic biofeedback, mindfulness-based biofeedback, galvanic skin response biofeedback, and respiratory biofeedback. Forty-three healthy volunteers (age 34.7 ± 7.2 years), comprising 28 (65%) women and 15 (35%) men, were enrolled in the study. All the participants were exposed to four distinct relaxation sessions according to a computer-generated random sequence. The efficacy of relaxation methods was evaluated by examining psychological, physiological, and biochemical stress indicators. All VR-based relaxation techniques reduced salivary steroid hormone (i.e., cortisol, cortisone, and total glucocorticoid) levels and increased galvanic skin response values. Similarly, all interventions led to a significantly reduced subjectively perceived psychological strain level. Three out of the four interventions (i.e., electroencephalographic, respiratory, and galvanic skin response-based biofeedback relaxation sessions) resulted in a decreased self-reported fatigue level. We suggest that newly developed VR-based relaxations techniques are potential tools for stress reduction and might be particularly suitable for individuals who are not capable of adhering to a strict and time-consuming stress management intervention schedule.

Keywords: biofeedback; relaxation; stress; virtual reality.