A Novel Noninvasive Technique for Intracranial Pressure Waveform Monitoring in Critical Care

J Pers Med. 2021 Dec 5;11(12):1302. doi: 10.3390/jpm11121302.

Abstract

Background: We validated a new noninvasive tool (B4C) to assess intracranial pressure waveform (ICPW) morphology in a set of neurocritical patients, correlating the data with ICPW obtained from invasive catheter monitoring.

Materials and methods: Patients undergoing invasive intracranial pressure (ICP) monitoring were consecutively evaluated using the B4C sensor. Ultrasound-guided manual internal jugular vein (IJV) compression was performed to elevate ICP from the baseline. ICP values, amplitudes, and time intervals (P2/P1 ratio and time-to-peak [TTP]) between the ICP and B4C waveform peaks were analyzed.

Results: Among 41 patients, the main causes for ICP monitoring included traumatic brain injury, subarachnoid hemorrhage, and stroke. Bland-Altman's plot indicated agreement between the ICPW parameters obtained using both techniques. The strongest Pearson's correlation for P2/P1 and TTP was observed among patients with no cranial damage (r = 0.72 and 0.85, respectively) to the detriment of those who have undergone craniotomies or craniectomies. P2/P1 values of 1 were equivalent between the two techniques (area under the receiver operator curve [AUROC], 0.9) whereas B4C cut-off 1.2 was predictive of intracranial hypertension (AUROC 0.9, p < 000.1 for ICP > 20 mmHg).

Conclusion: B4C provided biometric amplitude ratios correlated with ICPW variation morphology and is useful for noninvasive critical care monitoring.

Keywords: acute brain injury; intracranial compliance; intracranial hypertension; intracranial pressure.