Ultrafast Deep-Ultraviolet Laser-Induced Voltage Response of Pyrite

Micromachines (Basel). 2021 Dec 13;12(12):1555. doi: 10.3390/mi12121555.

Abstract

Ultrafast, high-sensitivity deep-ultraviolet (UV) photodetectors are crucial for practical applications, including optical communication, ozone layer monitoring, flame detection, etc. However, fast-response UV photodetectors based on traditional materials suffer from issues of expensive production processes. Here, we focused on pyrite with simultaneously cheap production processes and ultrafast response speed. Nanoseconds photovoltaic response was observed under UV pulsed laser irradiation without an applied bias at room temperature. In addition, the response time of the laser-induced voltage (LIV) signals was ~20 ns, which was the same as the UV laser pulse width. The maximum value of the responsivity is 0.52 V/mJ and the minimum value of detectivity was about to ~1.4 × 1013 Jones. When there exists nonuniform illumination, a process of diffusion occurs by which the carriers migrate from the region of high concentration toward the region of low concentration. The response speed is limited by a factor of the diffusion of the carriers. With an increment in laser energy, the response speed of LIV is greatly improved. The high response speed combined with low-cost fabrication makes these UV photodetectors highly attractive for applications in ultrafast detection.

Keywords: laser-induced voltage; pyrite; ultrafast detection.