Power-law and log-normal avalanche size statistics in random growth processes

Phys Rev E. 2021 Nov;104(5):L052101. doi: 10.1103/PhysRevE.104.L052101.

Abstract

We study the avalanche statistics observed in a minimal random growth model. The growth is governed by a reproduction rate obeying a probability distribution with finite mean a[over ¯] and variance v_{a}. These two control parameters determine if the avalanche size tends to a stationary distribution (finite scale statistics with finite mean and variance, or power-law tailed statistics with exponent ∈(1,3]), or instead to a nonstationary regime with log-normal statistics. Numerical results and their statistical analysis are presented for a uniformly distributed growth rate, which are corroborated and generalized by mathematical results. The latter show that the numerically observed avalanche regimes exist for a wide family of growth rate distributions, and they provide a precise definition of the boundaries between the three regimes.