Ferro-octupolar Order and Low-Energy Excitations in d^{2} Double Perovskites of Osmium

Phys Rev Lett. 2021 Dec 3;127(23):237201. doi: 10.1103/PhysRevLett.127.237201.

Abstract

Conflicting interpretations of experimental data preclude the understanding of the quantum magnetic state of spin-orbit coupled d^{2} double perovskites. Whether the ground state is a Janh-Teller-distorted order of quadrupoles or the hitherto elusive octupolar order remains debated. We resolve this uncertainty through direct calculations of all-rank intersite exchange interactions and inelastic neutron scattering cross section for the d^{2} double perovskite series Ba_{2}MOsO_{6} (M=Ca, Mg, Zn). Using advanced many-body first-principles methods, we show that the ground state is formed by ferro-ordered octupoles coupled by superexchange interactions within the ground-state E_{g} doublet. Computed ordering temperature of the single second-order phase transition is consistent with experimentally observed material-dependent trends. Minuscule distortions of the parent cubic structure are shown to qualitatively modify the structure of gaped magnetic excitations.