A limitation map of performance for porous electrodes in lithium-ion batteries

iScience. 2021 Nov 22;24(12):103496. doi: 10.1016/j.isci.2021.103496. eCollection 2021 Dec 17.

Abstract

Driven by expanding interest in battery storage solutions and the success story of lithium-ion batteries, the research for the discovery and optimization of new battery materials and concepts is at peak. The generation of experimental (dis)charge data using coin cells is fast and feasible and proves to be a favorite practice in the battery research labs. The quantitative interpretation of the data, however, is not trivial and decelerates the process of screening and optimization of electrode materials and recipes. Here, we introduce the concept of polarographic map and demonstrate how it can be leveraged to quantify the contribution of different non-equilibrium phenomena to the performance limitation and total polarization of a lithium-ion cell. We showcase the accuracy and diagnostic power of this approach by preparing and analyzing the electrochemical performance of 54 sets of LiNixMnyCo1-x-yO2 electrodes with different formulations and designs discharged in a range of 0.2C-5C.

Keywords: Electrochemistry; Energy systems; Materials application.