Sex-Specific Effects of Maternal and Post-Weaning High-Fat Diet on Adipose Tissue Remodeling and Asprosin Expression in Mice Offspring

Mol Nutr Food Res. 2022 Feb;66(4):e2100470. doi: 10.1002/mnfr.202100470. Epub 2022 Jan 5.

Abstract

Scope: Perinatal high-fat diet (HFD) increases risk of metabolic disorders in offspring. Adipose tissue remodeling is associated with metabolic syndrome. The current study characterizes the profile of maternal HFD-induced changes in adipose tissue remodeling and adipokines expression in mice offspring.

Methods and results: Female C57BL/6 mice are fed with CHOW or HFD for 2 weeks before mating, throughout gestation and lactation. At weaning, pups are randomly fed with CHOW or HFD, resulting in eight groups according to sex and maternal diet: Male CHOW-CHOW (MCC), Male CHOW-HFD (MCH), Male HFD-CHOW (MHC), Male HFD-HFD (MHH), Female CHOW-CHOW (FCC), Female CHOW-HFD (FCH), Female HFD-CHOW (FHC), and Female HFD-HFD (FHH). Increased body weight, impaired glucose tolerance, increased adipose tissue mass and hypertrophy, and decreased circulating asprosin level are only observed in male offspring exposure to maternal HFD. Serum asprosin level negatively correlates with fasting blood glucose, serum cholesterol (CHO), and high-density lipoprotein (HDL) levels, while positively correlates with serum low-density lipoprotein (LDL) and glutamate-oxaloacetate transaminase (GOT) levels in male offspring. A combination of genetic and biochemical analyses of adipokines shows the depot- and sex-specific changes in response to maternal and/or post-weaning HFD.

Conclusion: This study's results reveal the differential metabolic changes in response to maternal and/or post-weaning HFD in male and female offspring. The effect of maternal HFD on metabolic phonotype is more obvious in male offspring, supporting the notion that males are more susceptible to HFD-induced metabolic disorders.

Keywords: adipokines; adipose tissue; asprosin; maternal high-fat diet; post-weaning high-fat diet.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adipose Tissue / metabolism
  • Animals
  • Diet, High-Fat / adverse effects
  • Female
  • Glucose Intolerance*
  • Humans
  • Male
  • Maternal Nutritional Physiological Phenomena
  • Mice
  • Mice, Inbred C57BL
  • Pregnancy
  • Prenatal Exposure Delayed Effects*
  • Weaning