Hyperbranched Polyesters Based on Indole- and Lignin-Derived Monomeric Aromatic Aldehydes as Effective Nonionic Antimicrobial Coatings with Excellent Biocompatibility

Biomacromolecules. 2022 Jan 10;23(1):150-162. doi: 10.1021/acs.biomac.1c01186. Epub 2021 Dec 21.

Abstract

This research aims to investigate nonionic hyperbranched polyesters (HBPs) derived from indole and lignin resources as new nontoxic antimicrobial coatings. Three nonionic HBPs with zero to two methoxy ether substituents on each benzene ring in the polymer backbones were synthesized by melt-polycondensation of three corresponding AB2 monomers. The molecular structures and thermal properties of the obtained HBPs were characterized by gel permeation chromatography, nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and differential scanning calorimetry analyses. These HBPs were conveniently spin-coated on a silicon substrate, which exhibited significant antibacterial effect against Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive bacteria (Staphylococcus aureus and Enterococcus faecalis). The presence of methoxy substituents enhanced the antimicrobial effect, and the resulting polymers showed negligible leakage in water. Finally, the polymers with the methoxy functionality exhibited excellent biocompatibility according to the results of hemolysis and MTT assay, which may facilitate their biomedical applications.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aldehydes
  • Anti-Bacterial Agents / pharmacology
  • Anti-Infective Agents* / pharmacology
  • Indoles / pharmacology
  • Lignin / pharmacology
  • Polyesters* / chemistry
  • Polyesters* / pharmacology
  • Spectroscopy, Fourier Transform Infrared

Substances

  • Aldehydes
  • Anti-Bacterial Agents
  • Anti-Infective Agents
  • Indoles
  • Polyesters
  • Lignin