Effects of soil-extractable metals Cd and Ni from an e-waste dismantling site on human colonic epithelial cells Caco-2: Mechanisms and implications

Chemosphere. 2022 Apr:292:133361. doi: 10.1016/j.chemosphere.2021.133361. Epub 2021 Dec 17.

Abstract

E-wastes release toxic metals including Cd, Cu, Ni, Pb and Zn into nearby soils during dismantling process. However, their adverse effects and the associated mechanisms on human intestinal epithelium are poorly understood. In this study, their toxic effects on human colonic epithelial cells Caco-2 and the underlying mechanisms were assessed basing on three soils from Wenling e-waste dismantling site. Since soil-extractable metals are more available for gastrointestinal absorption, we used phosphate buffer saline solution to extract metals at solid to liquid ratio of 1:2. Among metals, total Cd and Ni exceeded the risk screening values in three soils, being 3.8-8.8 and 42.4-155 mg/kg. Furthermore, high extractable-metals at 5.9, 1.9, and 0.87 mg/kg Cd (20-67%) and 4.6, 6.4, and 12.4 mg/kg Ni (3.6-29%) were observed for Soil-1, -2 and -3, respectively. All three extracts triggered cytotoxicity, with Soil-2 showing the strongest inhibition of cell viability. Higher production of reactive oxygen species and stronger inhibition of antioxidant enzymes SOD1 and CAT were observed in Soil-2 and -3. Upregulation of proinflammatory mediators (IL-1β, IL-8 and TNF-α) and apoptosis-regulatory genes (GADD45α, Caspase-3, and Caspase-8) were observed. Our data suggest that soil extracts induced cytotoxicity, oxidative damage, inflammatory response, and cell apoptosis in Caco-2 cells, indicating soil ingestion from e-waste dismantling site may adversely impact human health.

Keywords: Antioxidant enzymes SOD1 and CAT; Apoptosis-regulatory genes; Heavy metals; Proinflammatory mediators; Reactive oxygen species.

MeSH terms

  • Caco-2 Cells
  • Cadmium / toxicity
  • China
  • Electronic Waste*
  • Environmental Monitoring
  • Humans
  • Metals, Heavy* / analysis
  • Metals, Heavy* / toxicity
  • Risk Assessment
  • Soil
  • Soil Pollutants* / analysis
  • Soil Pollutants* / toxicity

Substances

  • Metals, Heavy
  • Soil
  • Soil Pollutants
  • Cadmium