Monitoring the Conformation of the Sba1/Hsp90 Complex in the Presence of Nucleotides with Mn(II)-Based Double Electron-Electron Resonance

J Phys Chem Lett. 2021 Dec 30;12(51):12235-12241. doi: 10.1021/acs.jpclett.1c03641. Epub 2021 Dec 20.

Abstract

Hsp90 is an important molecular chaperone that facilitates the maturation of client proteins. It is a homodimer, and its function depends on a conformational cycle controlled by ATP hydrolysis and co-chaperones binding. We explored the binding of co-chaperone Sba1 to yeast Hsp90 (yHsp90) and the associated conformational change of yHsp90 in the pre- and post-ATP hydrolysis states by double electron-electron resonance (DEER) distance measurements. We substituted the Mg(II) cofactor at the ATPase site with paramagnetic Mn(II) and established the binding of Sba1 by measuring the distance between Mn(II) and a nitroxide (NO) spin-label on Sba1. Then, Mn(II)-NO DEER measurements on yHsp90 labeled with NO at the N-terminal domain detected the shift toward the closed conformation for both hydrolysis states. Finally, Mn(II)-Mn(II) DEER showed that Sba1 induced a closed conformation different from those with just bound Mn(II)·nucleotides. Our results provide structural experimental evidence for the binding of Sba1 tuning the closed conformation of yHsp90.

MeSH terms

  • Adenosine Triphosphatases / chemistry
  • Adenosine Triphosphatases / metabolism
  • Adenosine Triphosphate / chemistry
  • Adenosine Triphosphate / metabolism
  • Electrons
  • HSP90 Heat-Shock Proteins / chemistry
  • HSP90 Heat-Shock Proteins / metabolism*
  • Manganese / chemistry
  • Manganese / metabolism*
  • Molecular Chaperones / chemistry
  • Molecular Chaperones / metabolism*
  • Nucleotides / chemistry
  • Nucleotides / metabolism*
  • Saccharomyces cerevisiae / chemistry
  • Saccharomyces cerevisiae / metabolism
  • Saccharomyces cerevisiae Proteins / chemistry
  • Saccharomyces cerevisiae Proteins / metabolism*

Substances

  • HSP90 Heat-Shock Proteins
  • Molecular Chaperones
  • Nucleotides
  • SBA1 protein, S cerevisiae
  • Saccharomyces cerevisiae Proteins
  • Manganese
  • Adenosine Triphosphate
  • Adenosine Triphosphatases