Metal-Organic Frameworks-Derived Nitrogen-Doped Porous Carbon Nanocubes with Embedded Co Nanoparticles as Efficient Sulfur Immobilizers for Room Temperature Sodium-Sulfur Batteries

Small Methods. 2021 Aug;5(8):e2100455. doi: 10.1002/smtd.202100455. Epub 2021 Jul 9.

Abstract

Room temperature sodium-sulfur (RT Na-S) batteries are considered a promising candidate for energy-storage due to their high energy-density and low-cost. However, the shutting effect of polysulfides and sluggish kinetics of sulfur redox reactions still severely limit their practical implementation. Herein, a new type of 3D hierarchical porous carbonaceous nanocubes is reported as efficient sulfur hosts, composed of carbon nanotubes (CNT) and Co nanoparticles (NPs) uniformly embedded into a nitrogen-doped carbon matrix (NC). Because of the high specific surface area, large degree of graphitization, and the synergetic effects between Co NPs and N-doping, the as-designed CNTs/Co@NC electrodes not only significantly increase polysulfides immobilization, but also efficiently catalyze sulfur redox reactions, as confirmed by experimental results and DFT calculations. When tested in a RT Na-S battery, the S@CNTs/Co@NC-0.25 cathode demonstrates outstanding electrochemical performance, achieving high initial specific capacity of 1200.3 mAh g-1 at 0.1 C, remarkable rate capability up to 5.0 C (474.2 mAh g-1 ), and superior cyclic performance of 450.5 mAh g-1 (292 mAh g-1 ) after 400 cycles at 1.0 C (5.0 C). The integration of a 3D hierarchical porous architecture with well-dispersed Co NPs of an electro-catalyst provides valuable insights based on structure-adsorption-catalysis engineering for advanced RT Na-S batteries.

Keywords: DFT calculations; catalyze redox kinetics; hierarchical structures; metal-organic frameworks; sodium-sulfur batteries.