Schisandrin B ameliorates non-alcoholic liver disease through anti-inflammation activation in diabetic mice

Drug Dev Res. 2022 May;83(3):735-744. doi: 10.1002/ddr.21905. Epub 2021 Dec 19.

Abstract

Type 2 diabetes mellitus (T2DM) is a metabolic risk factor associated with non-alcoholic liver disease (NAFLD). Schisandrin B (Sch B) is a promising agent for NAFLD. However, the actions of Sch B on diabetes-associated NAFLD and the underlying mechanisms are not characterized. This study aimed to assess whether Sch B has beneficial effects on T2DM-associated NAFLD. Sch B (50 mg/kg, gavage) was administrated to C57BL/KSJ db/db mice for 2 weeks. Body weight, liver weight, blood glucose, and insulin resistance were measured. Serum lipid level and liver function were detected using the biochemistry analyzer. Quantitative Real-Time PCR assay was used to evaluate mRNA levers of lipid metabolism genes. Terminal-deoxynucleoitidyl Transferase Mediated Nick End Labeling (TUNEL) staining was performed to measure apoptosis in the liver. Pathological analysis and immunohistochemistry assessment were used to analyze hepatic steatosis and inflammatory infiltration. Sch B supplementation significantly decrease body weight, related liver weight, blood glucose, and serum insulin, and improved insulin resistance in db/db mice. Sch B obviously corrected NAFLD phenotypes including lipid deposition, steatohepatitis, and high levels of hepatic enzymes and serum lipid. In addition, mRNA levels of Sterol response element-bind protein 1c (SREBP-1c), fatty acid synthetase (Fasn), and acetyl-CoA carboxylase (ACC) were markedly downregulated by Sch B treatment. TUNEL-positive cells were also decreased by Sch B. Furthermore, Sch B inhibited the Kupffer cells, IL-1β, and TNF-α infiltration to the liver. Sch B ameliorated insulin resistance and lipid accumulation under high glucose conditions, which was partly associated with its inhibition of apoptosis and anti-inflammatory actions.

Keywords: Schisandrin B; inflammatory infiltration; insulin resistance; non-alcoholic fatty liver disease; type 2 diabetes mellitus.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Anti-Inflammatory Agents / metabolism
  • Anti-Inflammatory Agents / pharmacology
  • Anti-Inflammatory Agents / therapeutic use
  • Blood Glucose / metabolism
  • Body Weight
  • Cyclooctanes
  • Diabetes Mellitus, Experimental* / complications
  • Diabetes Mellitus, Type 2* / drug therapy
  • Insulin Resistance* / genetics
  • Lignans
  • Lipid Metabolism
  • Lipids
  • Liver
  • Mice
  • Mice, Inbred C57BL
  • Non-alcoholic Fatty Liver Disease* / drug therapy
  • Non-alcoholic Fatty Liver Disease* / metabolism
  • Non-alcoholic Fatty Liver Disease* / pathology
  • Polycyclic Compounds
  • RNA, Messenger / metabolism
  • Sterol Regulatory Element Binding Protein 1 / genetics
  • Sterol Regulatory Element Binding Protein 1 / metabolism
  • Sterol Regulatory Element Binding Protein 1 / pharmacology

Substances

  • Anti-Inflammatory Agents
  • Blood Glucose
  • Cyclooctanes
  • Lignans
  • Lipids
  • Polycyclic Compounds
  • RNA, Messenger
  • Sterol Regulatory Element Binding Protein 1
  • schizandrin B