Selenium reduces nociceptive response in acute 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced neurotoxicity

IBRO Neurosci Rep. 2021 Nov 27:12:1-11. doi: 10.1016/j.ibneur.2021.11.001. eCollection 2022 Jun.

Abstract

The potential of Se to alleviate pain associated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity was investigated. Swiss mice were intraperitoneally injected with MPTP (20 mg/kg) 4 times with an interval of 2 h in 1 day. Seven days after MPTP injection, the mice (n = 5 mice per group) were randomly assigned to groups: MPTP-, DOPA (50 mg/kg)-, Se4 (0.4 mg/kg)-, Se6 (0.6 mg/kg)-, DOPA+Se4-, and DOPA+Se6-treated groups were compared with controls. MPTP mice were treated for seven days; thereafter, motor-coordination and nociceptive-motor reactions were assessed. Pro-inflammatory cytokines (IL-1β, IL-6 and TNFα), and selected pain biomarkers (substance P (SP), glutamate and β-endorphin) were assessed in the serum and the substantial nigra pars compacta (SNpc). Motor activity was increased slightly by Se (0.6 or 0.4 mg/kg) vs. MPTP (10.48 ± 2.71 or 11.81 ± 1.28 s vs. 3.53 ± 0.06 s respectively) but considerably increased by DOPA (50 mg/kg) vs. MPTP (50.47 ± 3.06 s vs. 3.53 ± 0.06 s respectively). Se and DOPA increased nociceptive threshold but Se alone reduced both serum and SN pro-inflammatory cytokines. Se modulates SP while DOPA modulates SP and glutamate in the SNpc of mice treated with MPTP. Se suppressed pro-inflammatory cytokines and restored the basal pain biomarkers in the SNpc of mice treated with MPTP. Se requires further study as analgesic adjuvant.

Keywords: Motor coordination; Neuroinflammation; Neurotoxicity; Nociceptive threshold; Pain biomarkers; Selenium.