Development and analysis of a novel loading technique for FDM 3D printed systems: Microwave-assisted impregnation of gastro-retentive PVA capsular devices

Int J Pharm. 2022 Feb 5:613:121386. doi: 10.1016/j.ijpharm.2021.121386. Epub 2021 Dec 16.

Abstract

In this paper, we describe a modular post-printing loading protocol for a 3D printed gastro-retentive drug delivery system. Fused Deposition Modelling (FDM) 3D printing was exploited for the rapid prototyping of a modular floating system (caps-in-cap). Optimized models were produced as blank PVA scaffolds, and a morphological analysis of the FDM printed models was conducted to develop a straightforward protocol for drug-loading. The 3D printed gastro-retentive systems were then subjected to microwave irradiation in oversaturated solutions of anhydrous caffeine for drug loading, and research focused on an analysis of the impact of microwave irradiation on the chemical and physical properties of the polymer and the drug. The drug-loading efficiency, thermal and chemical characteristics of components, the stability of the drug and the morphology of processed printouts are characterised and described. Parameters of this unexplored microwave-assisted post-printing loading technique were evaluated and adequately set up, and the process resulted in the preservation of the polymeric matrix and enhancement of drug loading. Hence, microwave impregnation confirmed its potential in superseding the traditional pre- and post-printing loading methods, such as soaking techniques, being faster and more efficient and providing a new paradigm approach to personalised drug delivery.

Keywords: 2-propanol; 3D printing; Acetone; Anhydrous caffeine; Ethanol; Ethyl acetate; Fused deposition modelling; Gastro retentive formulation; Microwave-assisted impregnation; Oversaturated solutions; Poly(vinyl alcohol); Polyethylene glycol; Polyvinyl alcohol.

MeSH terms

  • Microwaves*
  • Polymers
  • Printing, Three-Dimensional*

Substances

  • Polymers