Construction of a TRFIC strip for rapid and sensitive detection of Ralstoniasolanacearum

Talanta. 2022 Mar 1:239:123139. doi: 10.1016/j.talanta.2021.123139. Epub 2021 Dec 10.

Abstract

The development of a sensitive and rapid screening method for Ralstonia solanacearum is critical for the control of tobacco wilt. In the present study, tissue homogenates of three tobacco varieties (Honda, Yunnan 87 and K326) with different resistance to R. solanacearum, were individually used as additives to the bacteria culture medium. The changes in R. solanacearum secretome were investigated and one of the most abundant secretary proteins with increased expression, polygalacturonase (PG), was selected as a marker for R. solanacearum identification. Then PG gene was cloned into E. coli, and the expressed protein was used as the immunogen to develop monoclonal antibodies. Subsequently, the monoclonal antibody against PG was coupled with synthesized polystyrene microspheres, and a rapid test strip system was developed for the detection of R. solanacearum based on time-resolved fluorescent immunochromatographic (TRFIC) method. Under optimal conditions, the detection limit of the strips could reach 72 cells/mL; while it was 422 cells/mL with a linear range from 4 × 102 to 5.12 × 104 cells/mL when testing tobacco samples, which is 1000 times lower than that of colloidal gold-labeled strips. Notably, no cross-reactivity was observed with nine tobacco-related pathogens. Finally, this TRFIC strips was applied to detect R. solanacearum existed in the tobacco and soils of fields with or without bacterial wilt. The results demonstrated that this TRFIC strips could distinguish the difference in bacterial concentration existed in tobacco and soil between the two fields. In summary, this test strip is suitable for sensitive, quick screening of R. solanacearum in tobacco.

Keywords: Antibody development; Lanthanide-labeled nanospheres; Quantitative strip; Ralstonia solanacearum; TRFIC.

MeSH terms

  • China
  • Escherichia coli / genetics
  • Plant Diseases*
  • Ralstonia solanacearum* / genetics
  • Secretome