Crosstalk between Endoplasmic Reticulum Stress and Oxidative Stress in Heat Exposure-Induced Apoptosis Is Dependent on the ATF4-CHOP-CHAC1 Signal Pathway in IPEC-J2 Cells

J Agric Food Chem. 2021 Dec 29;69(51):15495-15511. doi: 10.1021/acs.jafc.1c03361. Epub 2021 Dec 17.

Abstract

The intestinal epithelium is susceptible to heat stress (HS), which leads to gut leakage and inflammation. However, the mechanisms underlying HS-induced intestine dysfunction have yet to be elucidated. We established an in vitro chronic heat exposure-induced intestinal injury of intestinal porcine epithelial cells (IPEC-J2) exposed to high temperatures (43 °C) for 12 h. The results revealed that HS increased reactive oxygen species (ROS) generation and decreased superoxide dismutase 2 (SOD2) expression, leading to oxidative stress. Western blotting analysis demonstrated that HS induced apoptosis as evidenced by increased cytochrome c (Cyt c) release in the cytoplasm and caspase 3 activation. Transcriptome sequencing analysis revealed that HS activated the endoplasmic reticulum stress (ERS) response/unfolded protein response (UPR) but inhibited glutathione metabolism. Specifically, HS triggered the pro-apoptotic activating transcription factor 4 (ATF4)/CEBP-homologous protein (CHOP) branch of the UPR. Interestingly, glutathione-specific gamma-glutamylcyclotransferase1 (CHAC1) involved in glutathione degradation was upregulated due to heat exposure and was proved to be downstream of the ATF4-CHOP signal pathway. Knockdown of CHAC1 attenuated the HS-induced decrease in glutathione level and cell apoptosis. These studies suggest that crosstalk between ERS and oxidative stress in HS-induced apoptosis might be dependent on the ATF4-CHOP-CHAC1 signal pathway in IPEC-J2 cells.

Keywords: ATF4−CHOP−CHAC1 pathway; apoptosis; endoplasmic reticulum stress; glutathione; heat stress.

MeSH terms

  • Activating Transcription Factor 4* / genetics
  • Activating Transcription Factor 4* / metabolism
  • Animals
  • Apoptosis
  • Endoplasmic Reticulum Stress*
  • Oxidative Stress
  • Signal Transduction
  • Swine
  • Transcription Factor CHOP / genetics
  • Transcription Factor CHOP / metabolism

Substances

  • Activating Transcription Factor 4
  • Transcription Factor CHOP