The interaction of deep convection with the general circulation in Titan's atmosphere. Part 2: Impacts on the climate

Icarus. 2022 Feb:373:114623. doi: 10.1016/j.icarus.2021.114623. Epub 2021 Aug 2.

Abstract

The impact of methane convection on the circulation of Titan is investigated in the Titan Atmospheric Model (TAM), using a simplified Betts-Miller (SBM) moist convection parameterization scheme. We vary the reference relative humidity (RHSBM ) and relaxation timescale of convection (τ) parameters of the SBM scheme. Titan's atmosphere is mostly insensitive to changes in τ, but convective instability and precipitation are highly impacted by changes in RHSBM . Convection changes behavior from occurring in infrequent (<1 per Titan year), intense events at summer solstice that quickly encompass the entire globe at low RHSBM to near-continuous precipitation at the poles during summer at high RHSBM (>85%). The intermediate regime (RHSBM =70-80%) consists of frequent events (~10 per Titan year) of moderate intensity that are limited in meridional extent to their respective hemisphere. Using results from the Titan Regional Atmospheric Modeling System (TRAMS) and observations, we tune the parameters of the SBM parameterization with optimum values of RH=80% and τ=28800 s. We present a simulated decadal climatology that qualitatively matches observations of Titan's humidity and cloud activity and generally resembles previous results with TAM. Comparing this simulation to one without moist convection demonstrates that convection strengthens the meridional circulation, warms the mid-levels and cools the surface at the poles, and magnifies zonal-mean global moisture anomalies.

Keywords: Dynamics; Titan; atmosphere.