Volumetric compression develops noise-driven single-cell heterogeneity

Proc Natl Acad Sci U S A. 2021 Dec 21;118(51):e2110550118. doi: 10.1073/pnas.2110550118.

Abstract

Recent studies have revealed that extensive heterogeneity of biological systems arises through various routes ranging from intracellular chromosome segregation to spatiotemporally varying biochemical stimulations. However, the contribution of physical microenvironments to single-cell heterogeneity remains largely unexplored. Here, we show that a homogeneous population of non-small-cell lung carcinoma develops into heterogeneous subpopulations upon application of a homogeneous physical compression, as shown by single-cell transcriptome profiling. The generated subpopulations stochastically gain the signature genes associated with epithelial-mesenchymal transition (EMT; VIM, CDH1, EPCAM, ZEB1, and ZEB2) and cancer stem cells (MKI67, BIRC5, and KLF4), respectively. Trajectory analysis revealed two bifurcated paths as cells evolving upon the physical compression, along each path the corresponding signature genes (epithelial or mesenchymal) gradually increase. Furthermore, we show that compression increases gene expression noise, which interplays with regulatory network architecture and thus generates differential cell-fate outcomes. The experimental observations of both single-cell sequencing and single-molecule fluorescent in situ hybridization agrees well with our computational modeling of regulatory network in the EMT process. These results demonstrate a paradigm of how mechanical stimulations impact cell-fate determination by altering transcription dynamics; moreover, we show a distinct path that the ecology and evolution of cancer interplay with their physical microenvironments from the view of mechanobiology and systems biology, with insight into the origin of single-cell heterogeneity.

Keywords: cell fate decision; cell volume; heterogeneity; mechanobiology; single cell.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biomarkers, Tumor / genetics
  • Biomarkers, Tumor / metabolism
  • Biophysical Phenomena
  • Carcinoma, Non-Small-Cell Lung / genetics
  • Carcinoma, Non-Small-Cell Lung / metabolism
  • Carcinoma, Non-Small-Cell Lung / pathology
  • Cell Differentiation
  • Cell Line, Tumor
  • Cell Size*
  • Epithelial-Mesenchymal Transition / genetics*
  • Gene Expression Profiling
  • Gene Expression Regulation, Neoplastic
  • Gene Regulatory Networks
  • Humans
  • Lung Neoplasms / genetics
  • Lung Neoplasms / metabolism
  • Lung Neoplasms / pathology
  • Neoplastic Stem Cells / metabolism
  • Single-Cell Analysis
  • Tumor Microenvironment / genetics*

Substances

  • Biomarkers, Tumor