Local Charge Distributions, Electric Dipole Moments, and Local Electric Fields Influence Reactivity Patterns and Guide Regioselectivities in α-Ketoglutarate-Dependent Non-heme Iron Dioxygenases

Acc Chem Res. 2022 Jan 4;55(1):65-74. doi: 10.1021/acs.accounts.1c00538. Epub 2021 Dec 17.

Abstract

Non-heme iron dioxygenases catalyze vital processes for human health related to the biosynthesis of essential products and the biodegradation of toxic metabolites. Often the natural product biosyntheses by these non-heme iron dioxygenases is highly regio- and chemoselective, which are commonly assigned to tight substrate-binding and positioning. However, recent high-level computational modeling has shown that substrate-binding and positioning is only part of the story and long-range electrostatic interactions can play a major additional role.In this Account, we review and summarize computational viewpoints on the high regio- and chemoselectivity of α-ketoglutarate-dependent non-heme iron dioxygenases and how external perturbations affect the catalysis. In particular, studies from our groups have shown that often a regioselectivity in enzymes can be accomplished by stabilization of the rate-determining transition state for the reaction through external charges, electric dipole moments, or local electric field effects. Furthermore, bond dissociation energies in molecules are shown to be influenced by an electric field effect, and through targeting a specific bond in an electric field, this can lead to an unusually specific reaction. For instance, in the carbon-induced starvation protein, we studied two substrate-bound conformations and showed that regardless of what C-H bond of the substrate is closest to the iron(IV)-oxo oxidant, the lowest hydrogen atom abstraction barrier is always for the pro-S C2-H abstraction due to an induced dipole moment of the protein that weakens this bond. In another example of the hygromycin biosynthesis enzyme, an oxidative ring-closure reaction in the substrate forms an ortho-δ-ester ring. Calculations on this enzyme show that the selectivity is guided by a protonated lysine residue in the active site that, through its positive charge, triggers a low energy hydrogen atom abstraction barrier. A final set of examples in this Account discuss the viomycin biosynthesis enzyme and the 2-(trimethylammonio)ethylphosphonate dioxygenase (TmpA) enzyme. Both of these enzymes are shown to possess a significant local dipole moment and local electric field effect due to charged residues surrounding the substrate and oxidant binding pockets. The protein dipole moment and local electric field strength changes the C-H bond strengths of the substrate as compared to the gas-phase triggers the regioselectivity of substrate activation. In particular, we show that in the gas phase and in a protein environment C-H bond strengths are different due to local electric dipole moments and electric field strengths. These examples show that enzymes have an intricately designed structure that enables a chemical reaction under ambient conditions through the positioning of positively and negatively charged residues that influence and enhance reaction mechanisms. These computational insights create huge possibilities in bioengineering to apply local electric field and dipole moments in proteins to achieve an unusual selectivity and specificity and trigger a fit-for-purpose biocatalyst for unique biotransformations.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Alpha-Ketoglutarate-Dependent Dioxygenase FTO
  • Catalytic Domain
  • Dioxygenases* / metabolism
  • Humans
  • Iron
  • Ketoglutaric Acids*

Substances

  • Ketoglutaric Acids
  • Iron
  • Dioxygenases
  • Alpha-Ketoglutarate-Dependent Dioxygenase FTO