Comparative analysis of five Salvia species using LC-DAD-QToF

J Pharm Biomed Anal. 2022 Feb 5:209:114520. doi: 10.1016/j.jpba.2021.114520. Epub 2021 Dec 5.

Abstract

Several Salvia species, commonly known as sage plants, are an integral part of various culinary and folklore preparations for the perceived wide range of effects from organoleptic to psychological. As a result, many of these species are an integral part of botanical drug applications, highlighting the need for accurate identification and quality control for consumer's safety. Five closely related Salvia species (S. officinalis, S. miltiorrhiza, S. divinorum, S. mellifera, and S. apiana) within a same botanical family were analyzed and differentiated using LC-QToF. Accurate mass measurement (<5 ppm) of protonated and deprotonated molecules together with resulting fragments and product ions allowed unequivocal or tentative identification of more than 180 compounds either by comparison with reference standards or literature data. The leaf part were identified based on various phenolic acids, flavonoids as well as di- and tri-terpenoids. Polyphenolics, viz., salvianolic A/B and rosmarinic acids in S. officinalis, lipophilic diterpenoids, viz., tanshinones in S. miltiorrhiza, abietatriene diterpenes and triterpenoids (ursane-/olean-type) in S. mellifera, and S. apiana were identified as characteristic, significant components. In comparison, salvinorins and divinorins representing a class of neoclerodane diterpenoids were detected only in S. divinorum. The presented methodology can successfully be applied to qualitatively assess sage-based ingredients in various finished products and formulations.

Keywords: Analytical fingerprints; Chemical profiling; LC-DAD-QToF; Salvia species.

MeSH terms

  • Plant Leaves
  • Salvia miltiorrhiza*
  • Salvia*
  • Terpenes

Substances

  • Terpenes