Twenty-three-millisecond electron spin coherence of erbium ions in a natural-abundance crystal

Sci Adv. 2021 Dec 17;7(51):eabj9786. doi: 10.1126/sciadv.abj9786. Epub 2021 Dec 15.

Abstract

Erbium ions embedded in crystals have unique properties for quantum information processing, because of their optical transition at 1.5 μm and of the large magnetic moment of their effective spin-1/2 electronic ground state. Most applications of erbium require, however, long electron spin coherence times, and this has so far been missing. Here, by selecting a host matrix with a low nuclear-spin density (CaWO4) and by quenching the spectral diffusion due to residual paramagnetic impurities at millikelvin temperatures, we obtain a 23-ms coherence time on the Er3+ electron spin transition. This is the longest Hahn echo electron spin coherence time measured in a material with a natural abundance of nuclear spins and on a magnetically sensitive transition. Our results establish Er3+:CaWO4 as a potential platform for quantum networks.