Second-Harmonic-Generation-Active Oxyhalides: CuSb2O3X (X = Cl, Br)

Inorg Chem. 2022 Jan 10;61(1):42-46. doi: 10.1021/acs.inorgchem.1c03588. Epub 2021 Dec 15.

Abstract

Metal oxyhalides have attracted broad interest recently because of their diverse structures and versatile properties. Here, two oxyhalides, CuSb2O3Cl (1) and CuSb2O3Br (2), were studied by focusing on their nonlinear-optical properties. They are crystallized in the noncentrosymmetric monoclinic Cc structure, and the layered structures could be derived from a 1:1 combination of CuX- (X = Cl, Br) and Sb2O3-type slabs. Their energy gaps were determined to be 2.76 and 2.64 eV. The second-harmonic-generation (SHG) test suggests that they are nonlinear-optical-active, and the effects are ascribed to the contribution of CuX3O units. Meanwhile, the SbO3 units' arrangement has a small contribution to the SHG effects. This work is the pioneer SHG investigation of the MI-MIII-O-X (MI = Cu, Ag; MIII = trivalent As, Sb, Bi; X = halogen) family.