Shock-Induced Endothelial Dysfunction is Present in Patients With Occult Hypoperfusion After Trauma

Shock. 2022 Jan 1;57(1):106-112. doi: 10.1097/SHK.0000000000001866.

Abstract

Background: Shock-induced endothelial dysfunction, evidenced by elevated soluble thrombomodulin (sTM) and syndecan-1 (Syn-1), is associated with poor outcomes after trauma. The association of endothelial dysfunction and overt shock has been demonstrated; it is unknown if hypoperfusion in the setting of normal vital signs (occult hypoperfusion [OH]) is associated with endothelial dysfunction. We hypothesized that sTM and Syn-1 would be elevated in patients with OH when compared to patients with normal perfusion.

Methods: A single-center study of patients requiring highest-level trauma activation (2012-2016) was performed. Trauma bay arrival plasma Syn-1 and sTM were measured by enzyme-linked immunosorbent assay. Shock was defined as systolic blood pressure (SBP) <90 mm Hg or heart rate (HR) ≥120 bpm. OH was defined as SBP ≥ 90, HR < 120, and base excess (BE) ≤-3. Normal perfusion was assigned to all others. Univariate and multivariable analyses were performed.

Results: Of 520 patients, 35% presented with OH and 26% with shock. Demographics were similar between groups. Patients with normal perfusion had the lowest Syn-1 and sTM, while patients with OH and shock had elevated levels. OH was associated with increased sTM by 0.97 ng/mL (95% CI 0.39-1.57, p = 0.001) and Syn-1 by 14.3 ng/mL (95% CI -1.5 to 30.2, p = 0.08). Furthermore, shock was associated with increased sTM by 0.64 (95% CI 0.02-1.30, p = 0.04) and with increased Syn-1 by 23.6 ng/mL (95% CI 6.2-41.1, p = 0.008).

Conclusions: Arrival OH was associated with elevated sTM and Syn-1, indicating endothelial dysfunction. Treatments aiming to stabilize the endothelium may be beneficial for injured patients with evidence of hypoperfusion, regardless of vital signs.

Publication types

  • Observational Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Biomarkers / blood
  • Endothelium, Vascular / physiopathology*
  • Female
  • Humans
  • Male
  • Microcirculation / physiology*
  • Prospective Studies
  • Shock / blood
  • Shock / physiopathology*
  • Syndecan-1 / blood
  • Thrombomodulin / blood
  • Wounds and Injuries / physiopathology

Substances

  • Biomarkers
  • Syndecan-1
  • Thrombomodulin