The hypothalamic link between arousal and sleep homeostasis in mice

Proc Natl Acad Sci U S A. 2021 Dec 21;118(51):e2101580118. doi: 10.1073/pnas.2101580118.

Abstract

Sleep and wakefulness are not simple, homogenous all-or-none states but represent a spectrum of substates, distinguished by behavior, levels of arousal, and brain activity at the local and global levels. Until now, the role of the hypothalamic circuitry in sleep-wake control was studied primarily with respect to its contribution to rapid state transitions. In contrast, whether the hypothalamus modulates within-state dynamics (state "quality") and the functional significance thereof remains unexplored. Here, we show that photoactivation of inhibitory neurons in the lateral preoptic area (LPO) of the hypothalamus of adult male and female laboratory mice does not merely trigger awakening from sleep, but the resulting awake state is also characterized by an activated electroencephalogram (EEG) pattern, suggesting increased levels of arousal. This was associated with a faster build-up of sleep pressure, as reflected in higher EEG slow-wave activity (SWA) during subsequent sleep. In contrast, photoinhibition of inhibitory LPO neurons did not result in changes in vigilance states but was associated with persistently increased EEG SWA during spontaneous sleep. These findings suggest a role of the LPO in regulating arousal levels, which we propose as a key variable shaping the daily architecture of sleep-wake states.

Keywords: arousal; hypothalamus; mice; sleep; sleep homeostasis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Dexmedetomidine
  • Electroencephalography
  • Female
  • Glutamate Decarboxylase / metabolism*
  • Homeostasis
  • Male
  • Mice
  • Optogenetics
  • Preoptic Area / physiology*
  • Sleep / physiology*

Substances

  • Dexmedetomidine
  • Glutamate Decarboxylase
  • glutamate decarboxylase 2