Timeline of Changes in Biomarkers Associated with Spinal Cord Injury-Induced Polyuria

Neurotrauma Rep. 2021 Oct 27;2(1):462-475. doi: 10.1089/neur.2021.0046. eCollection 2021.

Abstract

Deficits in upper and lower urinary tract function, which include detrusor overactivity, urinary incontinence, detrusor-sphincter dyssynergia, and polyuria, are among the leading issues that arise after spinal cord injury (SCI) affecting quality of life. Given that overproduction of urine (polyuria) has been shown to be associated with an imbalance in key regulators of body fluid homeostasis, the current study examined the timing of changes in levels of various relevant hormones, peptides, receptors, and channels post-contusion injury in adult male Wistar rats. The results show significant up- or downregulation at various time points, beginning at 7 days post-injury, in levels of urinary atrial natriuretic peptide, serum arginine vasopressin (AVP), kidney natriuretic peptide receptor-A, kidney vasopressin-2 receptor, kidney aquaporin-2 channels, and kidney epithelial sodium channels (β- and γ-, but not α-, subunits). The number of AVP-labeled neurons in the hypothalamus (supraoptic and -chiasmatic, but not paraventricular, nuclei) was also significantly altered at one or more time points. These data show significant fluctuations in key biomarkers involved in body fluid homeostasis during the post-SCI secondary injury phase, suggesting that therapeutic interventions (e.g., desmopressin, a synthetic analogue of AVP) should be considered early post-SCI.

Keywords: hypothalamus; kidney; natriuretic peptides; polyuria; suprachiasmatic nucleus; vasopressin.