Toward Heteronuclear Molecular Re(I)-Cu(II) Boxes: Structural, Luminescent, and Magnetic Properties

ACS Omega. 2021 Nov 26;6(48):33192-33199. doi: 10.1021/acsomega.1c05638. eCollection 2021 Dec 7.

Abstract

The bifunctional ligands of isonicotinic acid (Py-4-COOH) and 4-pyrid-4-ylbenzoic acid (Pybz-4-COOH) instead of polypyridines were therefore reacted with (Re(CO)4)3(C3N3S3) (C3N3S3 = cyanurate trianion), resulting in the formation of two trinuclear [(Re(CO)3)3(C3N3S3)(Py-4-COOH)3] (1) and [(Re(CO)3)3(C3N3S3)(Pybz-4-COOH)3] (2), respectively. In the meantime, both complexes 1 and 2 are connected by three bifurcated hydrogen bonds between their carboxylic acid moieties Py-4-COOH and Pybz-4-COOH to form the supramolecular trigonal-prismatic and -antiprismatic structures, respectively. It is noted that complex 1 can further react with copper(II) nitrate upon deprotonation to give nonanuclear [(Re(CO)3)3(C3N3S3)(Py-4-COO)3]2Cu3(H2O)9 (3), where two trinuclear [(Re(CO)3)3(C3N3S3)(Py-4-COO)3] moieties are connected by three penta-coordinate copper(II) ions, each coordinating to two carboxylates and three water molecules, to form the trigonal-prismatic structure. Surprisingly, addition of pyrazine (pz) in the synthetic process of complex 3 resulted in serendipitous isolation of a rare example of octadecanuclear {[(Re(CO)3)3(C3N3S3)(Py-4-COO)3]2Cu3(H2O)6(pz)2}2 (4), which can be regarded as a dimer of complex 3, connected by two bridging pz ligands. Interestingly, both complexes 3 and 4 are heteronuclear molecular Re(I)-Cu(II) boxes, constructed by a complex-as-a-ligand strategy. Furthermore, complexes 1 and 2 can exhibit respective low-energy luminescence at ca. 561 and 534 nm at room temperature upon photoexcitation, and complex 3 is found to display antiferromagnetic coupling of -127.68 and -134.70 cm-1, possibly due to multiple hydrogen bonds inducing significant Cu(II)···Cu(II) coupling.