Performance evaluation and siting index of the stabilization ponds based on environmental parameters: a case study in Iran

J Environ Health Sci Eng. 2021 Aug 30;19(2):1681-1700. doi: 10.1007/s40201-021-00723-9. eCollection 2021 Dec.

Abstract

Stabilization ponds are open pools that remove total suspended solids, organic matters, microbial and pathogenic agents using physical, chemical, and biological processes. If the stabilization ponds are not well designed, they can produce odors, breed many insects, increase suspended solids concentration in the effluent and pollute groundwater. Consideration of environmental factors is critical for operation and maintenance. In this study, first, information on wastewater treatment plants and meteorological parameters were collected, and simultaneously, specialists were selected to score the effect of environmental factors on stabilization pond efficiency. A geographic information system was used to sit for suitable locations for stabilization ponds. The results showed that 23.6 % of Iran's treatment plants are stabilization ponds, which based on climate, evaporation, sunny hours, ice days, wind speed, and temperature parameters, 33.33 %, 37.3 %, 14 %, 50 %, 64 and 26 % of the stabilization ponds have obtained good points, respectively. The results also showed that 50 % of the stabilization ponds obtained an acceptable score considering all environmental parameters' simultaneous effect. A preliminary study based on considering all the environmental parameters showed that the central and southern regions are the best areas for establishing waste stabilization ponds; in contrast, northern and northeastern regions can have high operation and maintenance costs with lower efficiency. This study has shown that setup and design of the new waste stabilization ponds in Iran need to take into account by considering environmental factors because these factors have the main effect on algae growth which are one of main biological treatment.

Keywords: Environmental factors; Iran; Siting; Stabilization pond; Wastewater.