Accounting and red uction path of carbon emission firom facility agriculture in China

Ying Yong Sheng Tai Xue Bao. 2021 Nov 15;32(11):3856-3864. doi: 10.13287/j.1001-9332.202111.019.

Abstract

Facility agriculture, a typical agricultural production management mode, could affect carbon cycle due to its unique production environmental conditions and highly intensive utilization. With the five main sources as accounting objects, including agricultural film investment, energy consumption, pesticide and fertilizer application, CO2 fertilizer application, and facility soil, we estimated the amount and intensity of carbon emission of three facility agriculture (continuous greenhouse, solar greenhouse, and plastic greenhouse) in 31 provinces in 2018. The results showed that the total carbon emission of facility agriculture in China was 210.3817 million t CO2e, with the three facility agriculture types of plastic greenhouse, solar greenhouse, and continuous greenhouse accounting for 60.2%, 37.4% and 2.4%, respectively. Carbon emission of facility agriculture was mainly contributed by soil greenhouse gas, agricultural film and supplies investment. Carbon emission per unit area of continuous greenhouses was significantly lower than that of solar and plastic greenhouses. The scientific capital allocation rate and facility agriculture scale were the two main factors influencing the carbon emission in facility agriculture. Based on all the results, we presented the carbon emission reduction path from the three perspectives of improving the scientific investment, material consumption utilization rate, and facility area utilization rate of facility agriculture.

设施农业作为典型的农业生产管理模式,其特有的生产环境条件和高度集约利用的特点,会对农业碳循环产生影响。本研究以设施农业生产管理过程中的农膜投入、能源消耗、农药化肥投入、气肥施用、设施土壤五大温室气体排放源为核算对象,对2018年我国31个省份连栋温室、日光温室、塑料大棚3种设施农业的碳排放量和排放强度进行估算。结果表明:我国设施农业碳排放总量为21038.17万t CO2e,塑料大棚、日光温室、连栋温室3种类型设施农业碳排放量分别占60.2%、37.4%和2.4%。设施农业碳排放以土壤温室气体排放、农膜投入和农用品投入碳排放为主。连栋温室单位面积碳排放量显著低于日光温室和塑料大棚。科技资金配置率和设施农业规模是对设施农业碳排放影响最大的两个因素。基于此,本研究从提高设施农业的科技投入、物质消耗利用率、设施面积利用率3个角度提出碳减排路径。.

Keywords: LMDI model; connecting greenhouse.; material consumption; science and technology input; emission intensity.

MeSH terms

  • Agriculture*
  • Carbon Cycle
  • Carbon*
  • Fertilizers
  • Soil

Substances

  • Fertilizers
  • Soil
  • Carbon