Interface engineering: Synergism between S-scheme heterojunctions and Mo-O bonds for promote photocatalytic hydrogen evolution

J Colloid Interface Sci. 2022 Mar:609:212-223. doi: 10.1016/j.jcis.2021.12.007. Epub 2021 Dec 4.

Abstract

Simple high-temperature calcination and hydrothermal methods were followed to synthesize CeO2 and Mo-S, respectively. The efficient photocatalytic hydrogen evolution activity exhibited by the composite catalysts can be attributed to the edge active sites in Mo-S. The Mo-O bonds formed between CeO2 and Mo-S could further accelerate the processes of separation and migration of electrons between the catalyst interfaces. The hybrid catalyst 10%-CeO2/Mo-S exhibiting the best hydrogen generation ability (4.3 mmol h-1g-1) was obtained by optimizing the content of CeO2 in CeO2/Mo-S. Analysis of the PL spectral profile and photocurrent response recorded for the system revealed that 10%-COMS exhibited excellent photogenerated carrier separation ability. Analysis of the LSV and EIS curves revealed that 10%-COMS exhibited the optimal hydrogen production potential. The charge migration resistance provided by the systems was lower than the charge migration resistance provided by CeO2 and Mo-S. The synergism between the S-scheme heterojunctions and the Mo-O bonds helped accelerate the separation and migration of photo-induced carriers at the catalyst interfaces. The introduction of covalent bonds in the S-scheme heterojunctions and the results presented herein can potentially help develop a new method to realize photocatalytic hydrogen evolution.

Keywords: Mo-O bonds; Photocatalytic hydrogen evolution; S-scheme heterojunction; Synergistic effect.