Fabrication of biochar-based hybrid Ag nanocomposite from algal biomass waste for toxic dye-laden wastewater treatment

Chemosphere. 2022 Feb:289:133243. doi: 10.1016/j.chemosphere.2021.133243. Epub 2021 Dec 9.

Abstract

Dual functional innovative approaches were developed to tackle the algal scum problem in water by utilizing the algal (Spirogyra sp.) biomass waste for organic dye-laden industrial wastewater treatment, a global problem, and challenge. Therefore, an algal biochar-based nanocomposite (nAgBC) was synthesized and employed as a low-cost adsorbent for Congo red (CR) removal. Surface morphology, physicochemical characteristics, elemental composition, phase, and stability of the nanocomposite was analyzed using BET, FESEM-EDX, FTIR, XRD, XPS, and TGA. The nanocomposite was found to be thermostable, mesoporous with large and heterogeneous surface area, containing nAg as doped material, where -OH, NH, CO, CC, SO, and CH are the surface binding active functional groups. Maximum adsorption efficiency of 95.92% (18 mg L-1 CR) was achieved (qe = 34.53 mg g-1) with 0.5 g L-1 of nanocomposite after 60 min, at room temperature (300 K) at pH 6. Isotherm and kinetic model suggested multilayer chemisorption, where adsorption thermodynamics indicated spontaneous reaction. Fluorescens spectral analysis of CR confirmed the formation of CR supramolecule, supporting enhanced adsorption. Furthermore, the result suggested a 5th cycle reusability and considerable efficacy towards real textile industrial effluents. Synergistic effects of the active surface functional groups of the biochar and nAg, along with the overall surface charge of the composite lead to chemisorption, electrostatic attraction, H-bonding, and surface complexation with CR molecules. Thus, synthesized nAgBC can be applicable to mitigate the wastewater for cleaner production and environment.

Keywords: Adsorption mechanism; Algal biochar; Biochar-based nanocomposite; Congo red.

MeSH terms

  • Adsorption
  • Biomass
  • Charcoal
  • Hydrogen-Ion Concentration
  • Kinetics
  • Nanocomposites*
  • Wastewater
  • Water Pollutants, Chemical* / analysis
  • Water Purification*

Substances

  • Waste Water
  • Water Pollutants, Chemical
  • biochar
  • Charcoal